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1. Introduction

More than thirty years after its introduction [1] the large-N limit of four-dimensional QCD

remains elusive. It is widely believed that such a limit should capture the most interesting

non-perturbative properties of QCD, such as confinement and spontaneous chiral symetry

breaking, while neglecting others (e.g. resonance widths and the U(1) anomaly). It is also

believed that, in ’t Hooft’s limit, QCD should lend itself to an effective description in

terms of a string theory (see e.g. [2] for recent developments of the subject) or, perhaps, of

a gravitational dual similar to the one enjoyed by N = 4 super-Yang-Mills (SYM) theory

through the AdS-CFT correspondence [3]. Indeed, the large-N classification of diagrams

according to topology closely resembles the loop expansion of string theory in terms of

surfaces of increasing genus.

One should keep in mind, however, that the connection between large-N and graph-

topology is only proven order-by-order in perturbation theory. Whether the true large-N

limit (defined as solving exactly the theory at finite N and then taking N to infinity)

does actually coincide with the non-perturbative solution of a suitably defined “lowest

genus” theory remains to be proven case by case. Already the Gross-Witten model [4]

and the work of Marinari and Parisi [5] have taught us that the N → ∞ limit may not

commute with other limits, such as the full resummation of the strong-coupling expansion

or approaching first a phase transition. In QCD itself, the assumption (now supported by

lattice calculations [6]) that the topological susceptibility depends on whether the large-N

limit is taken before or after the chiral limit provides a solution of the U(1) problem [7].

In this letter we shall consider a class of planar matrix models in a (possibly new)

hamiltonian formulation. (Large-N literature being very vast, we shall refer to the nice
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reprint collection [8] for the classic papers on the subject). We shall then solve a particular

supersymmetric case (both numerically and analytically) in a planar (or better lowest-

genus) approximation and point out several amusing features of the solution, including a

phase transition and a non-trivial strong-weak duality in ’t Hooft’s coupling λ.

One motivation for this work was to prepare the ground for checking, in a simpler con-

text, a recently claimed planar equivalence [9] between a supersymmetric “parent theory”

and its non-supersymmetric “daughter” in a particular subsector. Our method (or at least

its numerical part) should apply without major modifications to the latter theory, and

therefore such a check should be forthcoming. Another motivation came from the recent

studies of the supersymmetric Yang-Mills quantum mechanics in various dimensions [10].

Although done at present mainly for SU(2) [11] (and partly for SU(3) and SU(4) [12]) gauge

groups, the goal of these works is to extrapolate eventually towards large-N whereby mak-

ing contact with M-theory [13]. Our results here offer the prospect of a substantial shortcut

for the whole program.

The rest of this letter (see [14] for more detailed account) is organized as follows: we

first define a general class of planar quantum mechanics (PQM) models and specify some

conditions for our method to be applicable. We then focus on the supersymmetric case

and, eventually, on a particular example for which spectrum and main features can be

worked out both numerically and analytically.

2. Hamiltonian formulation of PQM

Our formulation of planar quantum mechanics (PQM) is best done directly in a standard

hamiltonian framework (see also [15]). Let us start by defining a Hilbert space (with states

that span it) and operators (acting on it). The operators will be N × N destruction and

creation matrices:

(k)M j
i , (k)M j†

i , i, j = 1, . . . N ; k = 1, . . . Nf , (2.1)

where i, j represent “colour” indices while k represents a generalized “flavour” index. The

latter can be used, in a QFT generalization, as a label for momenta, polarizations etc. In

this paper it will only serve the purpose of distinguishing bosonic and fermionic degrees of

freedom. The above operators are assumed to obey standard (anti) commutation relations.

In familiar notations:
[

(k)M j
i , (k′)Mm†

l

}

= δm
i δj

l δk,k′ . (2.2)

The Hilbert space is constructed out of the usual Fock vacuum (annihilated by all
(k)M j

i ) by acting on it with a single-trace string of creation operators. This is the first

essential difference between general and planar QM. It is of course mimicking the colour

structure of the states that propagate in genus-zero diagrams, a small subset of all states

that are singlets of a U(N) group acting as:

M → UMU † . (2.3)
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This is of course an enormous simplification: if, for instance, the index k takes a single

(bosonic) value, the states spanning the Hilbert space are just labelled by a single integer,

n, corresponding to the number of M †s in the trace (see below).

The hamiltonians we shall consider are also single-trace operators and therefore singlets

of U(N), but, of course, they will include both creation and destruction operators. In order

to avoid producing unwanted vacuum diagrams we shall impose that the hamiltonian H

annihilates the Fock vacuum. This typically implies (though it is not implied by) normal

ordering of the operators appearing in H (not to be confused, of course, with the order in

the colour trace).

The hamiltonian will be a sum of such single-trace operators and will contain a factor

gn−2 for a term containing n operators. Schematically:

H =
∑

n

cngn−2 Tr(Mn) , (2.4)

where Mn stands for a product of Ms and M †s with a total of n factors. The (’t Hooft)

limit to be consider is, as usual, N → ∞ with the ’t Hooft coupling λ ≡ g2N kept fixed.

When such a hamiltonian acts on a generic single-trace state it will not give, generically,

another single-trace state. However, whenever it does not, one gets subleading terms in the

large-N limit. If we discard such terms we have a closed system and the matrix elements

of the hamiltonian turn out to be functions of λ alone: we simply have a well-defined

hamiltonian to diagonalize in the single-trace Hilbert space.

The final ingredient of our approach is to introduce a cut-off B ≡ nmax in the occu-

pation number thus reducing the problem to one that can be managed numerically [10] .

Eventually, by increasing B, we can check whether the lowest eigenstates and eigenvalues

converge to some finite limit. As we shall see, this will be the case in a simple toy model

where the method gives very interesting indications of the dependence of the spectrum

from λ. In turn, the numerical results will suggest properties that we shall be able to

derive analytically.

3. A class of supersymmetric matrix models

We will now specialize to the case in which there is just one bosonic and one fermionic

matrix, denoted, respectively, by a and f (plus their hermitean conjugates).

The class of supersymmetric models that we consider are a straightforward matrix

generalization [5] of Witten’s supersymmetric quantum mechanics (SQM) [16]. We will

assume that the supersymmetric charges Q and Q† are single-trace operators that are

linear in the fermionic matrices f and f †. Thus:

Q = Tr(A†f) , Q† = Tr(Af †) , (3.1)

where A = A(a, a†) represents some function of the bosonic matrices. We also demand

that Q and Q† are nihlpotent. This gives:

[Ai
j , A

k
l ] = 0 , for all i, j, k, l . (3.2)
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In our explicit example we will satisfy this condition trivially by making A (A†) depend

only on a (a†). We then obtain the supersymmetric hamiltonian as:

H = {Q†, Q} = (f †)ij fk
l [Aj

i , A
†l
k] + A†i

j Aj
i . (3.3)

By construction, H commutes with Q and Q†. It also commutes with fermion number,

F = Tr(f † f). In order to get rid of disconnected diagrams we need the condition:

Ai
j|0 >= 0 , for all i, j , (3.4)

which is again trivially satisfied if A depends only on a, something that guarantees that

also Q and Q† annihilate the trivial (empty) Fock state. Thus, by construction, our model

has (at least) one zero-energy state and does not break supersymmetry.

The spectrum of the theory should then consist of a zero-energy sector (providing a

certain value of Witten’s index) and degenerate massive supermultiplets. It is easy to

show1 that, barring unexpected extra symmetries, these supermultiplets should consist of

just one boson and one fermion. Technically, this is a consequence of the fact that the

only other operator in the SUSY algebra (besides Q, Q† and H), C ≡ [Q†, Q], satisfies

the equation C2 = H2. Hence, eigenstates can be classified according to whether they

carry C = ±H = ±E (in amusing analogy with BPS states). Furthermore, the algebra

implies that states with positive (negative) C are annihilated by Q† (Q), while they are

transformed in a state with opposite C by the other supersymmetric charge. All non-zero-

energy levels must therefore consist of two states with opposite C-parity. For the F = 0

(F = 1) sector C is negative (positive) for all the states but this fails to be the case for

higher values of F (see section 6).

4. A specific model and its numerical analysis

We now specialize further our model by taking:

Q = Tr[fa†(1 + ga†)] = Tr[fA†], Q† = Tr[f †(1 + ga)a] = Tr[f †A], (4.1)

and therefore

H = HB + HF ; (4.2)

HB = Tr[a†a + g(a†
2
a + a†a2) + g2a†

2
a2] ; (4.3)

HF = Tr[f †f + g(f †f(a† + a) + f †(a† + a)f)

+ g2(f †afa† + f †aa†f + f †fa†a + f †a†fa)] . (4.4)

In most of this paper we shall limit our attention to the F = 0 and F = 1 sectors. Some

discussion of our expectations for the F ≥ 2 will be given at the end of the paper but a

detailed analysis is postponed to further work.

As already anticipated, the planar states in the F = 0 sector are simply labeled

by the integer n corresponding to the number of a†s in the trace. We shall denote the

1One of us (GV) wishes to thank A. Veinshtein for a useful discussion on this issue.
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Figure 1: Lowest bosonic and fermionic levels as functions of λ for different cutoffs

normalized state with n bosonic quanta by |0, n〉. Similarly, the generic (single-trace)

F = 1 normalized state will be denoted by |1, n − 1〉: the corresponding creation operator

contains one fermionic and n − 1 bosonic operators. In the free theory (g = 0) there is a

single zero-energy bosonic state, |0, 0〉, while |0, n〉 and |1, n − 1〉 form a supermultiplet.

Working out the matrix elements of the hamiltonian is straightforward although tedious

(in particular the normalization factors have to be kept accurately). Keeping only the

leading terms as N → ∞ we find that the final result for the matrix elements of H depend

only on λ ≡ g2N , and are given by:

〈0, n|H|0, n〉 = (1 + λ(1 − δn1)) n , (4.5)

〈0, n + 1|H|0, n〉 = 〈0, n|H|0, n + 1〉 =
√

λ
√

n(n + 1) , (4.6)
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〈1, n|H|1, n〉 = (n + 1)(1 + λ) + λ , (4.7)

〈1, n + 1|H|1, n〉 = 〈1, n|H|1, n + 1〉 =
√

λ(2 + n) . (4.8)

After introducing a cutoff B ≡ nmax we can diagonalize the hamiltonians in the two

sectors and compute the spectra. Eigenvalues with E ¿ B converge rapidly to some finite

values, except near λ = 1, where some critical slowdown of the calculation emerges. Figure

1 gives the lowest fermionic and bosonic eigenvalues as functions of λ. Apart from the

trivial bosonic ground state we observe that:

• There is excellent boson-fermion degeneracy if we stay away from λ = 1;

• The cutoff B explicitly breaks supersymmetry, which we expect to recover only at

B = ∞;

• The breaking of SUSY allows the supermultiplets to split near λ = 1. More amusingly,

above λ = 1, the supermultiplets form once more, but with new partners. The

|0, E1〉 state remains unpaired (with zero energy), while |0, En+2〉 pairs with |1, En〉
(n = 0, 1, . . .) rather than with the small-coupling partner |1, En+1〉;

• Eigenvalues tend to collapse to zero at λ = 1 as the cutoff is increased.

• Some kind of symmetry between strong and weak ’t Hooft coupling appears.

Obviously, the behaviour near λ = 1 is strongly suggestive of a phase transition (if the

cutoff is removed). A rather shocking way of showing this is to plot the Witten index and

partition function (restricted to the two sectors we have considered):

W (β, λ) ≡ Tr
(

(−1)F e−βH
)

, Z(β, λ) ≡ Tr
(

e−βH
)

(4.9)

The results are shown in figure 2. The sudden jump by one unit in W (β, λ) around λ = 1

is quite spectacular. The standard, thermal partition function shows even more dramatic

singularity at λ = 1. As expected, the large cutoff and large β limits do not commute.

Our numerical results suggest that the large cutoff limit at fixed β reveals a singularity of

Z at λ = 1 which tends to a step-function (i.e. as for W ) plus a kind of “delta function”

as β → ∞.

In order to understand better these numerical results and what they mean at infinite

cutoff, we now resort to some analytic methods.

5. Analytic solution

Let us introduce new “composite” creation and annihilation operators for single trace

states:

a†n (an) creates (annihilates) |0, n〉 ; f †
n , (fn) creates (annihilates) |1, n − 1〉 , (5.1)

that (anti)commute as usual. Introducing for convenience b ≡
√

λ, it is easy to show that:

H(F=0) = a†1a1 +

∞
∑

n=2

n(1 + b2)a†nan +

(

∞
∑

n=1

b
√

n(n + 1)a†nan+1 + h.c.

)

(5.2)

– 6 –



J
H
E
P
0
1
(
2
0
0
6
)
1
5
6

0 0.5 1 1.5 2
λ

1

1.2

1.4

1.6

1.8

2

W( 6,λ)

40 ≤ B ≤ 200

0.5 1 1.5 2 2.5 3 3.5 4
λ

1

2

3

4

5

Z( 6,λ)

10 ≤ B ≤ 200

Figure 2: λ dependence of the Witten index and the partition functiom, at β = 6 for different

cutoffs.

and

H(F=1) =
∞

∑

n=1

[n + (n + 1)b2]f †
nfn +

(

∞
∑

n=1

b(n + 1)f †
nfn+1 + h.c.

)

(5.3)

We can also construct the SUSY charges as:

Q = a†1f1 +

∞
∑

n=1

√
n + 1a†n+1(fn+1 + bfn) , (5.4)

(and similarly for Q†) and check that {Q,Q†} = H.

In the F = 0 sector, besides the trivial vacuum, |0〉1, one can formally construct a

second state annihilated by H:

|0〉2 =

∞
∑

n=1

(−1

b

)n a†n√
n
|0〉1 . (5.5)

Clearly its norm is only finite at b > 1 explaining why there is no such a zero-energy state

below b = 1. Using the formula given above for Q† one can also check that Q†|0〉2 = 0.

We now come to the derivation of a new sort of strong-weak-λ duality which surpris-

ingly exists in this model. Using (5.3) for both b and 1/b we find immediately:

bH(F=1)(1/b) =
1

b
H(F=1)(b) + (1/b − b) , (5.6)

since
∑

n f †
nfn = 1 in this sector. Because of SUSY it must also work in the F = 0 sector.

In terms of eigenenergies, the duality relations read:

b
(

E(F=1)
n (1/b) + 1

)

=
1

b

(

E(F=1)
n (b) + 1

)

; b
(

E(F=0)
n (1/b) + 1

)

=
1

b

(

E
(F=0)
n+1 (b) + 1

)

.

(5.7)

Notice that, due to the existence of the second vacuum for b > 1, states, in the F = 0 sector,

whose energies are related by duality, do not have the same n. These duality relations are

nicely satisfied by our numerical eigenvalues computed at large cutoff (see table 1).

A consequence of duality is that, for all levels, the left and right derivatives of E at

λ = 1 (E′
<, E′

>) should satisfy:

E′
> + E′

< = 1/2 (5.8)
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b 1/2 2 3/4 4/3

n B

10 3.18818 3.19736 1.68608 1.91640

1 20 3.18808 3.18808 1.67497 1.68238

30 3.18808 3.18808 1.67488 1.67499

exact 3.18807663 1.67488116

20 6.45527 6.45637 3.09853 3.45017

3 40 6.45524 6.45524 2.97193 2.97543

60 6.45524 6.45524 2.97177 2.97177

exact 6.45523985 2.97177086

30 9.49504 9.49513 4.46674 4.84625

5 50 9.49503 9.49503 4.19908 4.21714

70 9.49503 9.49503 4.19672 4.19675

exact 9.49503451 4.19671404

Table 1: The cutoff dependence of three eigenenergies at two pairs of b values related by the duality

described in the text. Exact results (c.f. below) are identical for dual partners.

a relation that has also been checked numerically.

We finally turn to an analytic determination of the massive spectrum. To this purpose

it is convenient to rewrite H in the F = 0 subspace as:

H =

∞
∑

n=1

B†
nBn , Bn =

√
nan + b

√
n + 1an+1 ,

and to introduce new states:

|Bn〉 ≡ B†
n|0〉 =

√
n|n〉 + b

√
n + 1|n + 1〉 . (5.9)

These states are not orthonormal, nevertheless they form a complete set and this suffices

for our construction. The action of a “reduced” hamiltonian, H̄ ≡ (H−b2)/b, on the |Bn >

states is very simple:

H̄|Bn〉 = n|Bn−1〉 + n

(

b +
1

b

)

|Bn〉 + (n + 1)|Bn+1〉, n = 2, . . . . (5.10)

with two exceptions at n = 0, 1 for which:

H̄|B0〉 = −b|B0〉 + |B1〉 , H̄|B1〉 =

(

b +
1

b

)

|B1〉 + 2|B2〉.

The simplicity of (5.10) allows us to map the eigenproblem of H̄ into a simple differential

equation. Let us expand any generic eigenstate of H̄ into the |Bn〉 basis and associate with

it a function of one variable x:

|ψ〉 =

∞
∑

n=0

cn|Bn〉 , ↔ f(x) =

∞
∑

n=0

cnxn , (5.11)
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which is in fact a generating function for the {cn} coefficients.

It is then easy to see that the eigenequation for |ψ〉 maps into the following first order

differential equation for f(x):

w(x)f ′(x) + xf(x) − bf(0) − f ′(0) = εf(x), (5.12)

where w(x) = (x + b)(x + 1/b), and ε is the eigenvalue of H̄ (E = b(ε + b)). The solution

of (5.12) is straightforward:

f(x) = g(x)

∫ x

x0

bf(0) + f ′(0)

w(x′)g(x′)
dx′, (5.13)

where:

g(x) = (x + b)−α(x + 1/b)α−1 , α =
ε + b

b − 1/b
, E = α(b2 − 1) , (5.14)

is a solution of the homogenous equation and x0 is to be determined by some boundary

condition.

However, since the inhomogeneous term is given by bf(0)+f ′(0), there is an additional

consistency condition, namely the solution and its derivative, when taken at x = 0, must

reproduce f(0) and f ′(0) again. This leads to the relations

either (bg(0) + g′(0)) = 0 , or

∫ 0

x0

dx(x + b)α−1(x + 1/b)−α = 0 . (5.15)

The first condition gives α = 0, hence it can only lead to zero-energy states. Thus the

massive spectrum follows from the second condition (5.15). Consistency with (5.5) fixes

x0 = −1/b for b > 1 and x0 = −b for b < 1. In either case one should use the analytic

continuations of eq. (5.13) in order to solve (5.15).

Once this is done, our solution can be written in terms of the standard hypergeometric

function F ≡2 F1 as

f(x) =
1

α

1

x + 1/b
F

(

1, α; 1 + α;
x + b

x + 1/b

)

, b < 1, (5.16)

f(x) =
1

1 − α

1

x + b
F

(

1, 1 − α; 2 − α;
x + 1/b

x + b

)

, b > 1, (5.17)

and provides the generating functions for the expansion coefficients {cn} of the arbitrary

eigenstate into the |Bn〉 basis. As one crosscheck examine the b > 1 solution at α = 0

to find that it indeed generates the second massless state, eq. (5.5). On the other hand,

similar attempt for the b < 1 solution fails — there is no such state in the weak coupling

regime.

To summarize, after some trivial change of integration variable, the non-zero-energy

levels of the F = 0 (and thus by SUSY also of the F = 1) sector are given by the roots in

α of the following equations:

∫ 1/λ

0
dx(1 − x)−1x−α = 0 , (λ > 1) ;

∫ λ

0
dx(1 − x)−1xα−1 = 0 , (λ < 1) . (5.18)

– 9 –
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Solving these equations indeed reveals a series of discrete zeros, αn > (<)0 for b >

(<)1 which nicely confirm the eigenvalues En = αn(λ − 1) computed numerically in the

previous section. One immediately checks that, for two values of λ related by λ → 1/λ,

the solutions for α are connected by α → 1−α, insuring the duality relations (5.7) among

the corresponding eigenvalues.

At this point one can study the flow of the eigenvalues in various situations, e.g. at very

weak (and thus by duality also at very strong) coupling. More interesting is the behaviour

of the eigenvalues near the critical point at λ = 1. The Beta-functions in (5.18) can be

related to F (α, 1, α + 1;λ) and F (1 − α, 1, 2 − α; 1/λ) for λ < 1 and λ > 1, respectively.

¿From the known asymptotic behaviour of F (as its last argument approaches 1), we easily

get the approximate eigenvalues around λ = 1 in the form:

λ → 1− : En = (−αn)(1 − λ) ,

λ → 1+ : En+1 = (1 − αn)(λ − 1) , n = 0, 1, 2, . . . ,

ψ(αn) + γ + log(|1 − λ|) + O (|1 − λ|log(|1 − λ|)) = 0 , (5.19)

where ψ is the logarithmic derivative of the Γ-function and γ = 0.5772.. is the Euler-

Mascheroni constant. These formulas obey the duality relations (5.7). They also show

the non-analytic way the various levels collapse to zero energy at the critical point. In

particular, as λ → 1−, the first eigenvalue approaches zero as −(1 − λ) log−1(1 − λ), i.e.

with vanishing first –and infinite second– derivative.

The above formulae also allow a quantitative study of the free energy of the model

near the phase transition, which appears to be stronger than in the Gross-Witten model.

We have also determined numerically the first few zeroes at generic values of λ, and found

perfect agreement with the large cutoff limits of the numerical eigenvalues. The only

slightly difficult comparison occurs just around the phase transition where convergence (as

one increases the cutoff) undergoes a critical slowdown.

6. Remarks about the F ≥ 2 sectors

In principle our analysis can be extended in a straightforward way to higher fermion-

number sectors. In practice, calculation of the hamiltonian in those sectors becomes quickly

cumbersome. There are at least two reasons why it would be worthwhile making such an

extension.

Firstly, one would like to check whether the F = 0, 1 sectors completely determine the

structure of the phase transition at λ = 1. This would depend on how eigenvalues in the

higher-F sectors behave near λ = 1 and in particular on whether there are discontinuous

jumps of Witten’s index also in those sectors.

The second reason is that we may expect qualitatively new phenomena to occur when

we consider F ≥ 2 sectors. The fact that eigenstates in the F = 0 and F = 1 sectors pair

nicely without involving, say, F = 2 states can be argued on the basis of simply counting

the former states at weak coupling. However, when we go to higher F , states are typically

highly degenerate at zero coupling. The counting is relatively easy and is summarized in
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a kind of “Chew-Frautschi” plot in figure 3, where non-degenerate states are marked with

a full circle while degenerate ones are represented by an open circle showing the degree of

degeneracy.

Pairing these states in SUSY doublets (as
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E
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2

2

4

3

3

5

5

3

Figure 3: Chew-Frautschi-like plot of the low-

est seven levels with their respective degener-

acy and supersymmetry partnership at vanish-

ing λ.

λ is switched on) turns out to be possible,

but non trivial (due to some magic combi-

natorics! [10]-[12]): it is shown in figure 3

via the vertical segments connecting differ-

ent circles. For instance, the E = 6 levels

must pair according to the following pattern:

the two F = 2 states find their SUSY part-

ners in two linear combinations of the four

F = 3 states. The remaining two F = 3

states will match two (linear combinations)

of the three F = 4 bosons. Finally, the third

F = 4 boson will pair with the single F = 5

fermion. One can also argue that, while most

of the above levels have C/E = (−1)F+1, two

of the F = 3, E = 6 levels and one of the

F = 4, E = 6 levels have C/E = (−1)F .

We are planning to check numerically the low-

lying spectra of the F = 2 and F = 3 sectors

in order to see whether, indeed, two of the four F = 3 states around E = 6 do split from

the two (F = 2, F = 3) doublets as we turn on λ. Were this not the case, would signal

some higher symmetry underlying the model.

7. Discussion, summary

In this paper we have presented a new way to tackle, both numerically and analytically,

planar quantum mechanical problems which hopefully represent the large-N limit of matrix

models. Given the ubiquiness of matrix models in theoretical physics (see again [8]), it is

hard to overestimate the importance of developing powerful techniques for approaching

this kind of questions.

Our method is based on a direct hamiltonian construction of states and operators that

are relevant at lowest genus in a topological expansion of the theory. In principle it should

be applicable to any discretization of quantum field theories that allows to compute the

planar hamiltonian in a convenient basis of vectors.

As an illustration of the method we have considered a supersymmetric quantum me-

chanics model and managed to solve for its spectrum, both numerically and analytically,

in two fermionic sectors. Since supersymmetry transformations close within these two sec-

tors, we find, as expected, boson-fermion degeneracy. To our surprise, however, we also

find that, at a critical value of the ’t Hooft coupling, λ = 1, the spectrum looses its mass

gap and becomes continuous. This conclusion is also confirmed by the radically different
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dependence of the spectrum on the cutoff at λ = 1. This dependence is indeed characteris-

tic of the scattering plane-waves [17]. On the other side of the critical value the spectrum

has once more a mass gap but there is one more zero-energy bosonic state. In other words

the Witten index has jumped by one unit across the phase transition. Furthermore, energy

levels on the two sides of the critical point are connected through a non-trivial duality

relation. Another amusing property of the model is that, at least within those two sectors,

it can be solved analytically.

Besides generalizing the model to more interesting cases, there are two important

directions in which the model itself deserves further study:

• Extend calculations to sectors with higher fermion number;

• Understand the situation at finite (though large) N.

We hope to be able to address these issues in a forthcoming paper.
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